Exercise 81

Let

$$
f(x)= \begin{cases}x^{2} & \text { if } x \leq 2 \\ m x+b & \text { if } x>2\end{cases}
$$

Find the values of m and b that make f differentiable everywhere.

Solution

Take the derivative of f.

$$
f^{\prime}(x)= \begin{cases}2 x & \text { if } x \leq 2 \\ m & \text { if } x>2\end{cases}
$$

For f to be differentiable everywhere, it and its derivative must be continuous at the endpoints of every interval.

$$
\begin{array}{llll}
\text { At } x=2: & x^{2}=m x+b & \rightarrow & (2)^{2}=m(2)+b \\
\text { At } x=2: & 2 x=m & \rightarrow & 2(2)=m \tag{2}
\end{array}
$$

Solve equations (1) and (2) for m and b.

$$
m=4 \quad b=-4
$$

